Please use this identifier to cite or link to this item: http://repository.uma.ac.id/handle/123456789/17529
Title: Penerapan Metode KNN dan Ekstraksi Ciri GLCM Dalam Klasifikasi Citra Ikan Berformalin
Other Titles: Application of KNN Method and GLCM Feature Extraction in Formalin Fish Image Classification
Authors: Muhathir
Larasati, Diah Ayu
Keywords: Ikan Mujair
Mujair Fish
Ikan Tamban
Tamban Fish
k-NN dan GLCM
k-NN and GLCM
Issue Date: 25-Apr-2022
Publisher: Universitas Medan Area
Series/Report no.: NPM;178160018
Abstract: Ikan memiliki protein yang tinggi, bahkan jenis ikan tertentu mengandung protein yang lebih tinggi dari daging. Indonesia merupakan negara yang 75% wilayahnya terdiri dari lautan, yang menyebabkan Indonesia memiliki potensi ikan laut yang besar, setiap tahunnya sumber daya perikanan di Indonesia mencapai 65 juta ton. Ikan merupakan makanan yang mudah rusak. Hal ini menyebabkan banyak nelayan dan penjual ikan menggunakan bahan kimia formalin yang berbahaya. Formalin merupakan zat karsinogenik, artinya zat yang dapat memicu kanker. Oleh karena itu penulis melakukan penelitian untuk mengklasifikasikan ikan berformalin berdasarkan citranya menggunakan algoritma K-NN dengan rumus jarak manhattan dan ekstraksi ciri GLCM. Penelitian ini menggunakan dua jenis ikan yang berbeda yaitu ikan mujair dan ikan tamban. Dan berdasarkan penelitian, akurasi citra ikan nmujair 100% dan citra ikan tamban 61%, dengan presisi 0,63, recall 0,63 dan F1-Score 0,61. Fish has high protein, even certain types of fish contain higher protein than meat. Indonesia is a country where 75% of its territory consists of oceans, which causes Indonesia to have a large potential for marine fish, each year the fishery resources in Indonesia reach 65 million tons. Fish is a perishable food. This causes many fishermen and fish sellers to use the dangerous chemical formalin. Formalin is a carcinogenic substance, meaning a substance that can trigger cancer. Therefore, the author conducted a study to classify formalin fish based on its image using the K-NN algorithm with the manhattan distance formula and GLCM feature extraction. This study used two different types of fish, namely tilapia and tamban fish. And based on the research, the accuracy of the image of tilapia is 100% and the image of tamban fish is 61%, with a precision of 0.63, a recall of 0.63 and an F1-Score of 0.61.
Description: 95 Halaman
URI: http://repository.uma.ac.id/handle/123456789/17529
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
178160018 - Diah Ayu Larasati - Chapter IV.pdf
  Restricted Access
Chapter IV579.85 kBAdobe PDFView/Open Request a copy
178160018 - Diah Ayu Larasati - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography1.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.