Please use this identifier to cite or link to this item: http://repository.uma.ac.id/handle/123456789/17141
Title: Klasterisasi Tingkat Pemahaman Siswa dalam Sistem Pembelajaran Online dengan Metode K-Means Clustering
Other Titles: Clustering of Students' Understanding Levels in an Online Learning System with the K-Means Clustering Method
Authors: Khairina, Nurul
Sibatubara, Jenny Shinta
Keywords: Pembelajaran Online
Online Learning
Data Mining,
Data Mining
K-Means Clustering,
K-Means Clustering
Issue Date: 7-Feb-2022
Publisher: Universitas Medan Area
Series/Report no.: NPM;178160117
Abstract: Data Mining atau biasa disebut Penambangan data adalah proses ekstrasi dari data-data (berjumlah besar) untuk mendapatkan informasi terstruktur dari sistem yang dibutuhkan oleh pengguna. Penelitian data mining ini untuk mengetahui tingkat pemahaman siswa dalam pembelajaran online yang marak terjadi pada saat ini. Namun, pembelajaran online tidak menyertakan evaluasi dan pengelompokan untuk setiap siswa berdasarkan beberapa nilai yang telah diperoleh, sehingga pembimbing/guru belum dapat melihat rekomendasi, siswa mana yang perlu mendapat perhatian khusus terhadap tingkat pemahaman yang mereka dapatkan. Maka tujuan dari penelitian ini adalah membangun sebuah sistem berbasis deskop menggunakan Microsoft Visual Studio untuk memperoleh informasi dan mengetahui pemahaman siswa terhadap sistem Pembelajaran Online. Uji coba dalam penelitian ini menggunakan metode K-Means Clustering dimana metode tersebut dapat menghasilkan kelompok dengan cara menghitung jarak setiap data yang diuji dengan pusat cluster awal sehingga dapat menghasilkan pengelompokan yang akurat. Dilakukan sebanyak 6 kali literasi dengan data 30 siswa. Maka hasil yang didapat dari pengujian tersebut ialah C1 sebanyak 11 siswa, C2 sebanyak 17 siswa dan C3 sebanyak 2 siswa. Dimana C1 (tingkat pemahaman tinggi), C2 (tingkat pemahaman sedang), dan C3 (tingkat pemahaman rendah). Data Mining or commonly called Data mining is the process of extracting data (a large amount) to obtain structured information from the system required by the user. This data mining research is to determine the level of student understanding in online learning that is currently happening. However, online learning does not include evaluation and grouping for each student based on the scores that have been obtained, so the supervisor/teacher has not been able to see recommendations, which students need special attention to the level of understanding they get. So the purpose of this research is to build a desktop-based system using Microsoft Visual Studio to obtain information and determine students' understanding of the Online Learning system. The trial in this study used the K-Means Clustering method where this method was able to produce groups by calculating the distance of each data being tested from the initial cluster center so that it could produce an accurate grouping. Literacy was carried out 6 times with data of 30 students. Then the results obtained from the test are C1 as many as 11 students, C2 as many as 17 students and C3 as many as 2 students. Where C1 (high level of understanding), C2 (medium level of understanding), and C3 (low level of understanding).
Description: 105 Hal
URI: http://repository.uma.ac.id/handle/123456789/17141
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
178160117 - Jenny Shinta Sibatuara - Chapter IV.pdf
  Restricted Access
Chapter IV373.23 kBAdobe PDFView/Open Request a copy
178160117 - Jenny Shinta Sibatuara - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography2.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.