International Online Seminar: Food Security and Agriculture Resilience in Perspective of Water Use Efficiency Medan Area University. July 28, 2020

Water Resources Management for Rice Production

Chandra Setyawan Ph.D.

Department of Agricultural and Biosystem Engineering (ABE) Faculty of Agricultural Technology, Universitas Gadjah Mada (UGM), Indonesia

Department of ABE UGM

www.tpb.tp.ugm.ac.id

Land & Water Engineering

Irrigation Engineering, Water Management, Watershed Engineering, Agricultural Land Development and Evaluation.

Agricultural Energy & Machinery

Agricultural Machinery, Energy in Agriculture, Agricultural Management Information System, Biosystems Informatics.

------ LABORATORIES

Postharvest & Food Engineering

Food Engineering, Postharvest management, Agricultural products handling, and Environmental Agriculture Building Design.

Land & Water Resource Eng.

Biophysics Engineering

Farm Structure Environment Eng.

Postharvest and Food Eng.

Water Balance

Water Resources (WR) System

Water Resources for Rice Production

3

WR Network

WR Management Application

Do we have enough water?

Flood in rainy season

Drought in dry season

https://banten.suara.com

https://nasional.republika.co.id/

Hydrologic Cycle

Water Resources Systems

Water Resources Management (WRM)

human resources

Water Resources

conservation

storaging

Sufficient in Water Availability

Water Resources (WR) for Rice Production

WR Facility for Rice Production

(12)

-

WR Network System

planning incompatibility

illegal water using

O Dutte

Leakage of canal

WRM Application

Planting schedule

Maintenance of facilities

WRM

Operation of irrigation

Monitoring and evaluation

Planting Schedule

Operation of irrigation

water use planning

Liftin

water partition

water release

Sediment control

Maintenance of irrigation facilities

Planning

Cleaning

Inventory

Repair

Monitoring and evaluation

Indicator	Parameter	Weigting factor	score			
			1	2	3	4
Input	irrigation infrastruc- ture and its function	4	Very bad	poor	average	good
	Water resource availability	3	poor	Average	good	
	Human resource availability	3	Not enough	enough	More than enough	
	Financial availability	2	Not available	Available but not enough	Available and enough	
	Institutional asset	1	Not available	Available but not enough	available and enough	
Process	Irrigation operasion	3	poor	Average	good	
	Irrigation maintenance	2	poor	Average	good	
	Institutional condition	1	Non active	Not so active	Active	
Output	Water irrigation services	3	poor	average	good	
	Time of service	2	poor	average	good	
	Drainase system condition	1	poor	average	good	

ABE UGM, 2010

Monitoring and evaluation

Modernization of irrigation

Automatic Water Level Monitoring System Based on Computer Vision Technology for Supporting the Irrigation Modernization

This study aims to build image-based (computer vision), real-time water level monitoring system. It works by automatically capturing canal gauge, identifying canal gauge in photos by color, measuring pixel length, and converting to actual water level.

The computer vision algorithm has successfully determined water level in a specific condition, but further development of a robust, all-weather water level monitoring system based on computer vision technology is needed.

Supervisors:

Andri Prima Nugroho, STP, M.Sc., Ph.D. Dr. Murtiningrum, STP, M.Eng.

WR Availability < Demand

Crop planting modification

Additional water supply

SRI: System of Rice Intensification

Supletion from another source

